

Building a WCAG2 Compliant Site with ARIA

Thomas M. Logan

 Abstract – The Web Accessibility Initiative Accessible
Rich Internet Applications (ARIA) specification is nearing
completion [1]. Any nascent web standard will struggle with
inconsistent implementations. Consistent and accurate
documentation of best practices is critical in ensuring that a
new format becomes adopted broadly and consistently. This
paper explores the developer perspective of creating an
accessible web application. Accessibility APIs have failed
in the past because of the lack of documentation and clear
guidelines. Real world examples have been requested from
developers across all fields to understand how accessibility
is supported.

In general, accessibility issues with rich internet applications
can be characterized as:

• Providing the semantic structure of page areas and
functionality (e.g., navigation, main content, search,
etc.)

• Allowing certain non-focusable page elements to
receive keyboard focus (e.g., setting focus to an
error message within the page)

• Providing keyboard and screen reader accessibility
with complex widgets and navigation elements
(e.g., sliders, menu trees, etc.)

• Maintaining accessibility of content that is dynamic
and may change within the page (e.g., AJAX
content updates)

ARIA provides solutions to each of these problems. It allows
developers to specify a role for page areas and elements,
such as navigation, main content, and search. This allows
quick access directly to these page areas. In web content,
typically only links and form elements can receive keyboard
focus or will allow keyboard interactivity. With ARIA, the
author can allow any page element to become interactive
with the keyboard. This allows greater levels of accessibility
and interactivity for keyboard and screen reader users. The
developer can specify if and how intrusive the notification
for user will be when these areas are updated. ARIA
provides accessibility support for dynamic, complex page
widgets (interactive controls). Finally, ARIA also allows the
creation of live regions, special areas of the page that can be
updated dynamically.

I. PAGE STRUCTURE

 Proper structure of HTML content is essential in ensuring
efficient navigation of large amounts of content. Section
508 contains a requirement for skip navigation links to allow
a keyboard user to jump to the main content of the page [1].
The skip navigation requirement is an important
accommodation for allowing a user to skip to the most

important area of the page. There are many new web design
patterns that benefit from providing quick access to
additional common areas on the page. Developers of web
content need to begin with thinking about what logical
blocks of information exist on the page. Most commercial
pages have a banner along the top that contains the logo.
This can be identified by setting the ARIA role attribute to
“banner”. The main content should be contained within a
div element that has the role attribute set to “main”. This
will enable an assistive technology to quickly jump to this
location on the page. This will also allow the requirement of
placing a skip navigation link on the page to be removed.
 It is also important to note that more than one instance of
a type of landmark role can be used on a page. The ability to
tag multiple navigation bars on an application is a perfect
example. One common design pattern is to have a top
navigation bar and a left navigation bar. Marking this
content up with ARIA will allow an assistive technology to
efficiently jump between the two or more navigation regions
on the page. Tagging the footer content of a page will
enable it to be deconstructed from the presentation of the
page. When using any of these roles, a strong visual border
should be used to outline the content to assist in
understanding the structure of the page through visual
comprehension. Each region must have a proper heading
that is identifiable for the content and unique.

II. KEYBOARD SUPPORT

 Keyboard support is of increased importance to the web
as more complicated UI behaviors have become available.
The original interfaces of the web are largely a point and
click pattern. A user navigating a page with the TAB and
ENTER key could effectively access everything. This is one
reason that initial Section 508 requirements for the web did
not include keyboard requirements [1]. Now that web
components can be built from many different sub
components it is more difficult to enforce a uniform
keyboard model. It is best to follow a standard
recommendation so that users will know how to interact with
a particular piece of the user interface. A web application
developer should work through their application using only
the keyboard. This will illuminate the areas that need
additional work from the keyboard. When deciding what
keystroke should correspond with a particular action, the
developer should follow the guidelines at the DHTML Style
Guide to ensure a standard experience [3].
 Web development projects now require the ability to
differentiate between web content and web applications. A
web application will require a comparable keyboard model
to its desktop application counterpart. Assistive
technologies are able to customize their commanding models

when finding the role attribute set to “application” on the
body element of a web application.
 Web developers can support accessibility best practices
by choosing to use web controls from component developers
that have implementations for ARIA and keyboard access.
This saves developers a large amount of work and ensures
that good accessibility support is rewarded.

III. ROLE AND STATE INFORMATION

 Providing role and state information about a component
is covered in the Web Content Accessibility Guidelines
under Guideline 4.2, “For all user interface components
(including but not limited to: form elements, links and
components generated by scripts), the name and role can be
programmatically determined; states, properties, and values
that can be set by the user can be programmatically set; and
notification of changes to these items is available to user
agents, including assistive technologies[4].” These role and
state requirements in WCAG2 can be met through
supporting various ARIA attributes on elements. These
requirements are difficult to comprehend due to every type
of control requiring different specific pieces of information
to be present. When the information is made available it is
important to test with that a set of assistive technologies will
be able to interpret it.
 Automation plays an important role in ensuring
compliance with a specification that contains as many
requirements as ARIA does. By having automated test
cases, a more complicated specification can have stronger
adherence. Often authors strive to make their site as
accessible as possible but find it difficult to interpret the vast
requirements that exist in accessibility specifications.
Without automated enforcement checks, bad coding
practices become standard across applications. If assistive
technologies need to enact specific workarounds to enable a
particular application, other application authors will have to
incorrectly implement a specification to function.

IV. LIVE REGIONS

 Live regions address the dynamic nature of modern web
applications. A live region can be used to notify a screen
reader that a specific update on the screen is important to be
read. It can also be used to tell a reader not to automatically
announce a particular update on the screen. It is fair to say
that the majority of current web sites have areas where live
regions can be made use of. Developers need the ability to
provide a notification to a user that a particular action has
successfully occurred. For example in the Queue Music[5]
application, the author wishes to notify a user that a
particular song is loading after the user presses enter to
request an item to play. This can be achieved through using
the aria-live attribute to mark the dynamic region that
contains the status of the player.
 In the Queue Music application, there is also a piece of
content that should not be read automatically to the user.
There is a timer value that indicates the current position in

the song that the video player is currently playing. If this
notification was announced to a reader every time it updated
on the screen, there would be no opportunity to hear any
other content. In these cases the web author should mark the
region with the aria-live attribute set to”off”. Reader
technologies may still access and present the value of the
timer through navigation of the browser’s Document Object
Model.

V. CONCLUSION

 A common assumption of web developers in 2009 is that
use of advanced JavaScript coding techniques is forbidden.
With ARIA this assumption is fortunately no longer valid.
ARIA techniques enable most web content to be made
accessible. The challenge will be ensuring that best
practices are enforced through documentation and
automation. Good implementations of ARIA must be
available through commonly used assistive technologies to
ensure wide adoption of ARIA. For a company or institution
to use ARIA they need to be able to see the solution working
end-to-end with an assistive technology. Coordinated efforts
are ongoing in 2009 between assistive technologies,
corporations, and tool vendors to ensure that content best
practices work reliably.

REFERENCES

[1] Accessible Rich Internet Application (ARIA) 1.0. 18 May 2009.
W3C. 18 June 2009 <http://www.w3.org/WAI/PF/aria/>.

[2] Section 508: Section 508 Standards. Access Board. 18 June 2009
<http://section508.gov/index.cfm?FuseAction=Content&ID=12#We
b>.

[3] DHTML Style Guide. 13 May 2009. AOL LLC. 22 June 2009
<http://dev.aol.com/dhtml_style_guide>.

[4] Web Content Accessibility Guidelines (WCAG) 2.0. 11 Dec. 2008.
W3C. 18 June 2009 <http://www.w3.org/TR/WCAG20/>.

[5] Queue Music. 1 May 2009. Thomas Logan. 22 June 2009
<http://www.queuemusic.org>.

